Streamline Tracing on General Triangular or Quadrilateral Grids

نویسندگان

  • Sébastien F. Matringe
  • Hamdi A. Tchelepi
چکیده

Streamline methods have received renewed interest over the past decade as an attractive alternative to traditional finite-difference (FD) simulation. They have been applied successfully to a wide range of problems including production optimization, history matching, and upscaling. Streamline methods are also being extended to provide an efficient and accurate tool for compositional reservoir simulation. One of the key components in a streamline method is the streamline tracing algorithm. Traditionally, streamlines have been traced on regular Cartesian grids using Pollock’s method. Several extensions to distorted or unstructured rectangular, triangular, and polygonal grids have been proposed. All of these formulations are, however, low-order schemes. Here, we propose a unified formulation for high-order streamline tracing on unstructured quadrilateral and triangular grids, based on the use of the stream function. Starting from the theory of mixed finite-element methods (FEMs), we identify several classes of velocity spaces that induce a stream function and are therefore suitable for streamline tracing. In doing so, we provide a theoretical justification for the low-order methods currently in use, and we show how to extend them to achieve high-order accuracy. Consequently, our streamline tracing algorithm is semi-analytical: within each gridblock, the streamline is traced exactly. We give a detailed description of the implementation of the algorithm, and we provide a comparison of lowand high-order tracing methods by means of representative numerical simulations on 2D heterogeneous media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids

Streamline methods for subsurface-flow simulation have received renewed attention as fast alternatives to traditional finite volume or finite element methods. Key aspects of streamline simulation are the accurate tracing of streamlines and the computation of travel time along individual streamlines. In this paper, we propose a new streamline tracing framework that enables the extension of strea...

متن کامل

Velocity interpolation and streamline tracing on irregular geometries

Streamline tracing on irregular grids requires reliable interpolation of velocity fields. We propose a new method for direct streamline tracing on polygon and polytope cells. While some numerical methods provide a basis function that can be used for interpolation, other methods provide only the fluxes at the faces of the elements. We introduce the concept of full field and raw field methods. Fu...

متن کامل

Automatic Conversion of Triangular Meshes into Quadrilateral Meshes with Directionality

This paper presents a triangular-to-quadrilateral mesh conversion method that can control the directionality of the output quadrilateral mesh according to a user-specified vector field. Given a triangular mesh and a vector field, the method first scores all possible quadrilaterals that can be formed by pairs of adjacent triangles, according to their shape and directionality. It then converts th...

متن کامل

Streamline tracing on irregular geometries

The accurate and efficient tracing of streamlines is fundamental to any streamline-based simulation method. For grids with irregular cell geometries, such as corner-point grids with faults or Voronoidiagram (pebi) grids, most efforts to trace streamlines have been focused on subdividing irregular cells into sets of simpler subcells, typically hexahedra or simplices. Then one proceeds by reconst...

متن کامل

Evenly Spaced Streamlines for Surfaces: An Image-Based Approach

We introduce a novel, automatic streamline seeding algorithm for vector fields defined on surfaces in 3D space. The algorithm generates evenly spaced streamlines fast, simply and efficiently for any general surface-based vector field. It is general because it handles large, complex, unstructured, adaptive resolution grids with holes and discontinuities, does not require a parametrization, and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007